An Agent Based, Dynamic Service System to Monitor, Control and Optimize Distributed Systems

ICFA WORKSHOP
Daegu, May 2005

Iosif Legrand
California Institute of Technology
MonALISA is A Dynamic, Distributed Service Architecture

- Real-time monitoring is an essential part of managing distributed systems. The monitoring information gathered is necessary for developing higher level services, and components that provide automated decisions, to help operate and optimize the workflow in complex systems.

- The MonALISA system is designed as an ensemble of autonomous multi-threaded, self-describing agent-based subsystems which are registered as dynamic services, and are able to collaborate and cooperate in performing a wide range of monitoring tasks. These agents can analyze and process the information, in a distributed way, to provide optimization decisions in large scale distributed applications.

- An agent-based architecture provides the ability to invest the system with increasing degrees of intelligence; to reduce complexity and make global systems manageable in real time.
The MonALISA Architecture Provides:

- Distributed **Registration and Discovery** for Services and Applications.
- Monitoring all aspects of complex systems:
 - System information for computer nodes and clusters
 - Network information: WAN and LAN
 - Monitoring the performance of Applications, Jobs, or services
 - The End User Systems, its performance
- Can interact with any other services to provide in near real-time customized information based on monitoring data.
- Secure, remote **administration** for services and applications.
- **Agents to supervise applications**, to restart or reconfigure them, and to notify other services when certain conditions are detected.
- The MonALISA framework can be used to develop higher level decision **services**, implemented as a distributed network of communicating agents, to perform global optimization tasks.
- **Graphical User Interfaces** to visualize complex information.
The MonALISA Discovery System & Services

- Fully Distributed System with no Single Point of Failure
- Secure & Public
- Proxies
- Clients, HL services repositories
- Dynamic load balancing
- Scalability & Replication
- Security
- AAA for Clients

Global Services or Clients

Proxies

MonALISA services

AGENTS

Network of JINI-LUSs
Secure & Public

Distributed Dynamic Discovery- based on a lease Mechanism and REN

Iosif Legrand
MonALISA service & Data Handling

- Data Stores
 - Data Cache
 - Service & DB
- WEB Service
- WSDL
- SOAP
- Service & Data Handling
- Configuration Control (SSL)
- Lookup Service
- Client (other service) Web client
- WEB Service
- WSDL SOAP
- Postgres MySQL
- Lookup Service
- Discovery
- Registration
- Communications via the ML Proxy
- Client (other service) Java
- MonALISIA Service
- Applications
- Predicates & Agents
- Configuration Control (SSL)
- User defined loadable Modules to write /sent data
Registration / Discovery
Admin Access and AAA for Clients

MonALISA Service

Registration (signed certificate)

Discovery

Client (other service)

Data
Filters & Agents

Client authentication

AAA services

MonALISA Service

Admin SSL connection

Trust keystore

MonALISA Service

Lookup Service

Trust keystore

MonALISA Service

Lookup Service

Services Proxy Multiplexer

Services Proxy Multiplexer
Security in the MonALSIA System

1) Community-based trust relationships.
Multiple MonaLisa services may be operated by a community. The community memberships is maintained in specialized Authorization Services

2) Flexible communication protection

3) Secure registration in LUSs based on an X.509 host or site certificate

4) Auditing

SSL/TLS, PKIX, GSS-API
Communities using MonALISA

- Grid3
 ~40 sites in US and 1 Korea
- CMS-US sites
- CMS
- CDF
- D0 SAR
- ABILENE backbone
- GLORIAD
- STAR
- ALICE
- VRVS System
- RoEduNET backbone
- INTERNET2 PIPES
- OSG
- LHCb

It has been used for Demonstrations at:

- SC2003
- Telecom 2003
- WSIS 2003
- SC 2004
- I2 2005
Monitoring I2 Network Traffic, Grid03 Farms and Jobs
Monitoring Network Topology
Latency, Routers

NETWORKS

ROUTERS

AS
Monitoring the Execution of Jobs and the Time Evolution

SPLIT JOBS

LIFELINES for JOBS

Summit a Job

DAG

Job

Job1

Job2

Job3

Job31

Job32
Monitoring ABILENE backbone Network

- Test for a Land Speed Record
- ~ 7 Gb/s in a single TCP stream from Geneva to Caltech
Monitoring VRVS Reflectors and Communication Topology
ApMon – Application Monitoring

Library of APIs (C, C++, Java, Perl, Python) that can be used to send any information to MonALISA services

- Flexibility, dynamic configuration, high communication performance
- Automated system monitoring
- Accounting information

- No Lost Packages

ApMon configuration generated automatically by a servlet / CGI script

MonALISA CPU Usage (%)

MonALISA Service
LISA- Localhost Information Service Agent
End To End Monitoring Tool

A lightweight Java Web Start application that provides complete monitoring of the end user systems, the network connectivity and can use the MonALISA framework to optimize client applications

- It is very easy to deploy and install by simply using any browser.
- It detects the system architecture, the operating system and selects dynamically the binary parts necessary on each system.
- It can be easily deployed on any system. It is now used on all versions of Windows, Linux, Mac.
- It provides complete system monitoring of the host computer:
 - CPU, memory, IO, disk, …
 - Hardware detection
 - Main components, Audio, Video equipment,
 - Drivers installed in the system
 - Provides embedded clients for IPERF (or other network monitoring tools, like Web 100)
 - A user friendly GUI to present all the monitoring information.
LISA - Provides an Efficient Integration for Distributed Systems and Applications

- It is using external services to identify the real IP of the end system, its network ID and AS.
- Discovers MonALISA services and can select, based on service attributes, different applications and their parameters (location, AS, functionality, load ...)
 - Based on information such as AS number or location, it determines a list with the best possible services.
 - Registers as a listener for other service attributes (e.g., number of connected clients).
 - Continuously monitors the network connection with several selected services and provides the best one to be used from the client’s perspective.
 - Measures network quality, detects faults and informs upper layer services to take appropriate decisions.
Reflectors are hosts that interconnect users by permanent IP tunnels. The active IP tunnels must be selected so that there is no cycle formed.

Tree

The selection is made according to the real-time measurements of the network performance.

\[w(T) = \sum_{(v,u) \in T} w((v,u)) \]

minimum-spanning tree (MST)
Creating a Dynamic, Global, Minimum Spanning Tree to optimize the connectivity

A weighted connected graph $G = (V,E)$ with n vertices and m edges. The quality of connectivity between any two reflectors is measured every 2s. Building in near real time a minimum-spanning tree T

$$w(T) = \sum_{(v,u) \in T} w((v,u))$$
EVO: LISA Detects the Best Reflector for each Client and MonALISA Agents keep the reflectors connected in a MST

- Dynamic Discovery of Reflector
- Creates and maintains, in real-time, the optimal connectivity between reflectors (MST) based on periodic network measurements.
- Detects and monitors the user configuration, its hardware, its connectivity and its performance.
- Dynamically connects the client to the best reflector
- Provides secure administration.
- It is using alarm triggers to notify unexpected events
MonALISA agents to create on demand on an optical path or tree

Discovery & Secure Connection

Optical Switch

ML Demon

ML Agent MonALISA

Optical Switch

ML Agent MonALISA

ML Agent MonALISA

ML Agent MonALISA

Time to create a path on demand <1s independent of the location and the number of connections

Runs a ML Demon

>ml_path IP1 IP4 “copy file IP4”

ML proxy services used in Agent Communication
Monitoring Optical Switches
Agents to Create on Demand an Optical Path
Test Setup for Controlling Optical Switches

3 partitions on each switch
They are controlled by a MonALISA service

- Monitor and control switches using TL1
- Interoperability between the two systems
- End User access to service
MonALISA is a framework to correlate information from different layers

Interface with GMPLS where available

Networking

Farms & Data Serv.

Applications

Near real time feedback between major layers is crucial for dynamic load balancing, adaptability and self-organization
SUMMARY

MonaLISA is a fully distributed service system with no single point of failure. It provides reliable registration and discovery.

- MonaLISA is interfaced with many monitoring tools and is capable to collect any information from different applications.
- It allows to analyze and process information in real time, locally, using Filters or Agents that are dynamically deployed.
- Can be used to control and monitor any other applications. Agents can be used to supervise applications, to restart or reconfigure them, and to notify other services when certain conditions are detected.
- Provides a secure administration interface which allows to remotely control (start / stop/ reconfigure / upgrade) distributed services or applications.
- The Agent system in the MonaLISA framework can be used to develop higher level services, implemented as a distributed network of communicating agents, to perform global optimization tasks.

It proved to be a stable and reliable distributed service system
~200 Sites running MonaLISA

http://monalisa.caltech.edu